On Generalized (m,n) Bi-ideals in Near Subtraction Semigroups

¹S.JEYANTHI, ²V.MAHALAKSHMI, and ³S.JAYALAKSHMI.

¹P.G Student, Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi.

jeyanthiselvaraj1205@gmail.com

²PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi.

maha.krishna86@gmail.com

³Associate Professor of Mathematics, Sri Parasakthi College for women, Courtallam.

jayarajkutti@gmail.com

Abstract:

In this paper we introduced the concept of generalized (m,n) bi-ideal in a class of near subtraction semigroups (i.e.) A near subtraction semigroups X satisfying the condition: A subalgebra B of (X, -) is said to be a generalized (m,n) bi-ideal of X if $B^m X B^n \subseteq B$, where m and n are positive integers. Also we study certain properties of bi-ideals in a left permutable s-near subtraction semigroups. Also we generalize the notion of bi-ideals and obtain the properties of generalized bi-ideals in certain classes of near subtraction semigroups. Further it is shown that the concept of generalized bi-ideals and bi-ideals are equivalent in a left permutable s-near subtraction semigroups.

Key words: Bi-ideal, s-near subtraction semigroup, property(α).

1. Introduction

B.M.Schein [12] considered systems of the form (X;0;\), where X is a set of functions closed under the composition "o" of functions (and hence (X;0) is a function semigroup) and the set theoretic subtraction "\" (and hence (X;\) is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B.Zelinka[16] discussed a problem proposed by B.M.Schein concerning the structure of multiplication in a subtraction semigroup.

He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. For basic definition one may refer to Pilz[11]. The notion of bi-ideals was introduced by Tamizh Chelvam and Ganesan[14]. Further Tamizh Chelvam [15] obtained certain properties of bi-ideals in a class of near-rings and also obtained equivalent conditions for a generalized near-field in terms of bi-ideal in a sub commutative s-near ring. With this in mind, initially we study certain properties of bi-ideals in left permutable near subtraction

semigroup. Also we generalize the notion of bi-ideals and obtain the properties of generalized bi-ideals in certain classes of near subtraction semigroups. Further it is shown that the concept of generalized biideals and bi-ideals are equivalent in a left permutable s- near subtraction semigroups.

2. Preliminaries on Near Subtraction Algebra

Definition 2.1:

A nonempty set X together with binary operations "-" and is said to be a subtraction algebra if it satisfies the following

(i)
$$x - (y - x) = x$$

(ii)
$$x - (x - y) = y - (y - x)$$

(iii)
$$(x - y) - z = (x - z) - y$$
, for every $x, y, z \in X$.

Definition 2.2:

A nonempty set X together with two binary operations "-" and "" is said to be subtraction semigroup if it satisfies the following:

- (i) (X,-) is a subtraction algebra.
- (ii) (X, \cdot) is a semigroup.

(iii
$$x(y-z) = xy - x$$
 and $(x-y)z = xz - yz$, for every $x, y, z \in X$.

Definition 2.3:

A nonempty set X together with two binary operations "-" and "." is said to be a near subtraction semigroup (right) if it satisfies the following:

- (i) (X,-) is a subtraction algebra.
- (ii) (X, \cdot) is semigroup.
- (iii) (x y)z = xz yz for every $x, y, z \in X$.

Definition 2.4:

A nonempty subset S of a subtraction semigroup X is said to be a **subalgebra** of X if $x - x' \in X$ whenever $x, x' \in S$.

Note 2.5:

Let X be a near subtraction semigroup. Given two subsets A and B of X, $AB = \{ab/a \in A, b \in B\}$. Also we define another operation "*"

$$A*B=\{ab-a(a'-b)/a, a'\in A, b\in B\}.$$

Definition 2.6:

We say that X is an s(s')-near **subtraction semigroup** if $a \in Xa(aX)$, for all $a \in X$.

Definition 2.7:

A s-near subtraction semigroup X is said to be a \overline{s} -near subtraction semigroup if x = xX, for all $a \in X$.

Definition 2.8:

An element $a \in X$ is said to be **regular** if for each $a \in X$, a = aba for some $b \in X$.

Definition 2.9:

A near subtraction semigroup X is said to have property(α) if xX is a subalgebra of (X,-), for every $x \in X$.

Definition 2.10:

A near subtraction semigroup X is said to be **left permutable** if abc = bac, for all $a, b, c \in X$.

Definition 2.11:

A near subtraction semigroup X is called generalized near-field (GNF) if for each $a \in X$, there exists a unique $b \in X$ such that a = aba and b = bab.

Definition 2.12:

A subalgebra B of (X,-) is said to be **bi-ideal** of X if $BXB \cap (BX) * B \subseteq B$. In the case of a zero symmetric near subtraction semigroup, a subalgebra B of X is a quasi-ideal if $BXB \subseteq B$.

Definition 2.13:

A family \mathcal{J} of subsets of a set A is called a **Moore system** if (i) $A \in \mathcal{J}$ and (ii) is closed under arbitrary intersections.

Lemma 2.14:

If X has the condition, eX = eXe = Xe, for all $e \in E$, then $E \subseteq C(X)$.

Lemma 2.15:

Let X be a zero-symmetric near subtraction semigroup. If L= $\{0\}$, then en = ene, for $0 \neq e \in E$ and $n \in X$.

3. On Generalized (m,n) Bi-ideals

In this section first we study certain properties involving generalized (m,n) biideals in a class of near subtraction semigroups. Also we see certain properties of bi-ideals in a left permutable s-near subtraction semigroup, which is different from the class so far we have discussed.

Definition 3.1:

A subalgebra B of (X,-) is said to be a **generalized** (m,n) **bi-ideal** of X if $B^mXB^n \subseteq B$, where m and n are positive integers.

Remark 3.2:

Note that every bi-ideal is a generalized (m,n) bi-ideal, for all positive integers m and n. However the converse is not true. This can be seen from the example given below.

Example 3.2.1:

Let X={0,1,2,3,4,5,6,7} in which "-"

and "." are defined by,

-	0	1	2	3	4	5	6	7	- 41	0	1	2	3	4	5	6	
	0						_	_	0	0	0	0	0	0	0	0	
1	1	0	1	1	1	1	1	1	1	0	2	4	2	0	2	4	
ž	2	2	2	2	2	2	2	2	2	0	4	0	4	0	4	0	
3	3	3	3	0	3	3	3	3	3	0	6	4	6	0	6	4	
1	4	4	4	4	0	4	4	4	4	0	0	0	0	0	0	0	
5	5	5	5	5	5	0	5	5	5	0	2	4	2	0	2	4	
6	6	6	6	6	6	6	0	6	6	0	4	0	4	0	4	0	
7	7	7	7	7	7	7	7	0	7	0	6	4	6	0	6	4	

One can check that $B=\{0,7\}$ is a subalgebra of (X,-) and $B^3XB^2 \subseteq B$, Whereas $BXB \not\subset B$. Hence B is a generalized (3,2) bi-ideal. But not a bi-ideal.

Proposition 3.3:

The set of all generalized (m,n) biideals of X form a Moore system on X.

Proof:

Let $\{B_i\}_{i\in I}$ be a set of generalized (m,n) bi-ideals of X. Let $B = \cap B_i$. Then $B^m X B^n \subseteq B_i^m X B_i^n \subseteq B_i \subseteq B$. Hence B is a generalized (m,n) bi-ideal of X, for all positive integers m and n.

Proposition 3.4:

Let B a generalized (m,n) bi-ideal B of X. Then Bb and b'B are generalized (m,n) bi-ideals of X, Where, $b, b' \in X$ and b' is a distributive element in X.

Proof:

Clearly Bb is a subalgebra of (X,-) and $(Bb)^m X(Bb)^n \subseteq B^m X B^n b \subseteq Bb$. Since b' is distributive, b'B is a subalgebra of (X,-) and $(b'B)^m X(b'B)^n = b'B^m X B^n \subseteq b'B$. Hence Bb and b'B are the generalized (m,n) bi-ideals of X.

Corollary 3.5:

Let B be a generalized (m,n) bi-ideal of X. If b is a distributive element of X and

 $c \in X$, then bBc is a generalized (m,n) biideal of X, for all positive integers m and n.

Proof:

Follows from the proposition 3.4.

Theorem 3.6:

Let X be a left permutable s-near subtraction semigroup. Then $B = B^m X B^n$, for every generalized (m,n) bi-ideal B of X, for all positive integers m and n if and only if X is regular.

Proof:

Assume that $= B^m X B^n$, for every generalized (m,n) bi-ideal B of X. For every $a \in X$, Xa is a generalized (m,n) bi-ideal of X. Since X is a s-near subtraction $a \in Xa =$ semigroup, $(Xa)^m X(Xa)^n \subseteq XaXa$. (i.e.) a = c_1ac_2a , for some $c_1, c_2 \in X$. Since X is a left permutable near subtraction semigroup $a = ac_1c_2a \in aXa$. (i.e.,) a is regular and so X is regular.

Conversely, let $b \in B$. Since X is regular, b = bab, for some $a \in X$. Therefore $b = bababab = b^2a^3b^2 \in b^mXb^n \in$ $B^m X B^n$ andso $B \subseteq B^m X B^n$. Bydefinition $B^m X B^n \subseteq B$. Hence $B = B^m X B^n$, for every generalized (m,n) bi-ideal B of X.

Theorem 3.7:

Let X be a left permutable s-near subtraction semigroup. Then $B = B^m X B^n$, for every generalized (m,n) bi-ideal B of X if and only X is a GNF, for all $a \in X$.

Proof:

Assume that X is a GNF. Then X is regula andso from the above Theorem 3.6,

 $B = B^m X B^n$, for every generalized (m,n) bi-ideal B of X.

Conversely, assume that $B = B^m X B^n$ for every generalized (m,n) bi-ideal B of X. From the above Theorem 3.6, X is a regular and to prove X is a GNF, it is enough to prove that $E \subseteq C(X)$. First let us show that $aXa = Xa^2 = Xa$, for all $a \in X$. Let $x \in aXa$. Since X is a left permutable near subtraction semigroup, x = $aca = ca^2 \in Xa^2$. Therefore $aXa \subseteq Xa^2$. Similarly one can prove that $Xa^2 \subseteq aXa$. Thu $aXa = Xa^2$. Since X is regular, for $a \in X$, a = aca, for some $c \in$ X. From this, we get that $Xa = Xaca \subseteq XaXa \subseteq aXa \subseteq Xa$. Hence $Xa = Xa^2 = aXa$. Since X is a s-near subtraction semigroup, the above implies that X is strongly regular and Xe = eXe, for $e \in E$. Now by the Lemma 2.15, eXe =eX, for $e \in E$. Thus, eXe = Xe = eXevery $e \in E$. Now by the Lemma 2.14, $E \subseteq$ C(X).

Theorem 3.8:

Let X be a left permutable s-near subtraction semigroup. Then B = BXB, for every bi-ideal B of X if and only if $B = B^m X B^n$, for every generalized (m,n) bi-ideal B of X

Proof:

Assme that $B = B^m X B^n$, for every generalized (m,n) bi-ideal B of X. By the Theorem 3.6, X is regular and so B = BXB, for every bi-ideal B of X.

Conversly assume that B = BXB, for every bi-ideal B of X. Hence by the Theorem 3.6, X is a GNF and hence the result follows from the Theorem 3.7.

References

- [1] J.C.Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass, 1969.
- [2] P.Dheena and G.Satheesh Kumar, On strongly regular near-subtraction semigroups, Commun. Korean Math. Soc. 22 (2007), no. 3, 323-330.
- [3] Jayalakshmi.S A study on Regularities in near rings, Ph.D thesis, Manonmaniam Sundaranar University, 2003
- [4] Y.B.Jun and H.S.Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129-134.
- [5]Y.B.Jun, H.S.Kim, and E.H.Roh, *Ideal* theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459-464.
- [6]Y.B.Jun and K.H.Kim, Prime irreducible ideals in subtraction algebras, Ital. J. Pure Appl. Math.
- [7] S.Maharasi, V.Mahalakshmi, *Bi-ideals of* Near-subtraction semigroup, Advances in Algebra, Volume 6, Number 1 (2013), pp. 35-43.
- [8] S.Maharasi, V.Mahalakshmi, Quasiideals and K-regular Near-Subtraction semigroups, To appear in Journal of Algebra, New Delhi.
- [9] S.Maharasi, V.Mahalakshmi, Strongly regular and Bi-ideals of Near-Subtraction Semigroup, IJMS Vol.12, No 1-29 (January-June 2013), pp. 97-102.

- [10] C.V.L.N Murty, Generalized-nearfield, croc.EdinburghMath.soc., 27 (1984), 21-24.
- [11] PilzGunter, *Near-rings*, North Holland, Amsterdam, 1983.
- [12]B.M.Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
- [13] Tamizh Chelvam T and Ganesan.N, On Indian J.Pure bi-ideals of near-rings, Appl.Math. 18(11) (1987) 1002-1005.
- [14] Tamizh Chelvam T, Bi-ideals and B-regular near-rings, J. Ramanujam Math. Soc. 7(2) (1982) 155-164.
- [15] Tamizh Chelvam T and Ganesan.N, On minimal bi-ideals of near-rings, Journal of the Indian Math. Soc. 53 (1988) 161-166.
- [16] B.Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.